
Utility of 3-Amino-4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine in Heterocyclic Synthesis

Moustafa A. Gouda*

Faculty of Science, Department of Chemistry, Mansoura University, Mansoura ET-35516, Egypt *E-mail: dr_mostafa_chem@yahoo.com Received January 8, 2010 DOI 10.1002/jhet.481

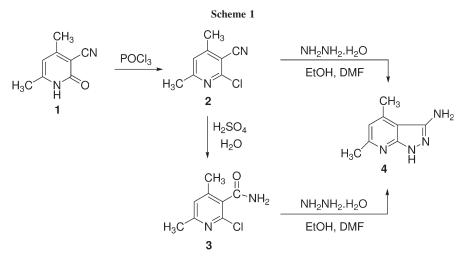
Published online 7 October 2010 in Wiley Online Library (wileyonlinelibrary.com).

The author dedicates this article to his mother.

This review describe the synthesis and reactions of 3-amino-4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine as building block for the synthesis of polyfunctionalized heterocyclic compounds with pharmacological interest.

J. Heterocyclic Chem., 48, 1 (2011).

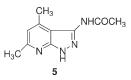
Contents

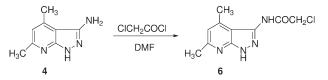

			Page
Ι.		Introduction	1
2.		Synthesis	2
3.		Reactivity	2
4.		Reactions	2
4.1.		Acetylation	2
	4.1.1.	Using acetic anhydride	2
	4.1.2.	Using chloroacetyl chloride	2
4.2		Diazotization	2
4.3		Reaction with 3-bromopropionic acid	5
4.4		Reaction with dibenzyl cyanocarbonimidodithioate	5
4.5		Reaction with ethyl 2-cyano-3,3-bis(methylthio)acrylate	6
4.6		Reaction with isocyanate, isothiocyanate, and thiocyanate derivatives	6
4.7		Reaction with carbon disulfide	8
4.8		Reaction with aromatic aldehydes	8
4.9.		Reaction with enaminonitrile	10
		References and notes	10

1. INTRODUCTION

When pyrazole and pyridine ring systems are fused together various condensed ring systems may arise from such fusion. The pyrazolopyridines comprise of five isomers.

4,6-Dimethyl-1*H*-pyrazolo[3,4-*b*]pyridin-3-amine (4) has been used as versatile precursor to prepare several heterocyclic compounds. The amidine moiety ($-N=C-NH_2$) moiety of the molecule is a favorable unit to react with dinucleophiles usually result in the formation of bridge head nitrogen heterocyclic systems [1,2]. Furthermore,

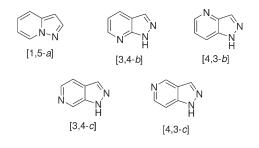

diazotized 3-amino-4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine (7) has been used to synthesize several azodyes [3] and pyridopyrazolotriazine [4–8]. Pyrazolo[3,4-*b*]pryridines have received considerable attention as a result of their biological activity. It has been shown that many of pyrazolopyridines especially pyrazolo[3,4-*b*]pryridines have antibacterial [9] and antiviral effects [10]. Some of the derivatives act as anti-metabolites and those are effective in the control of cancer [11]. Pyrazolopyridines were found to be among many systems which affects on the


4. REACTIONS

4.1. Acetylation.

4.1.1. Using acetic anhydride Treatment of 4 with acetic anhydride afforded the corresponding acetyl derivative 5 [15].

4.1.2. Using chloroacetyl chloride Reaction of **4** with chloroacetyl chloride in dry DMF achieved 3-(*N*-chloroacetyl-amino)pyrazolo[3,4-*b*]pyridine (**6**) [2].

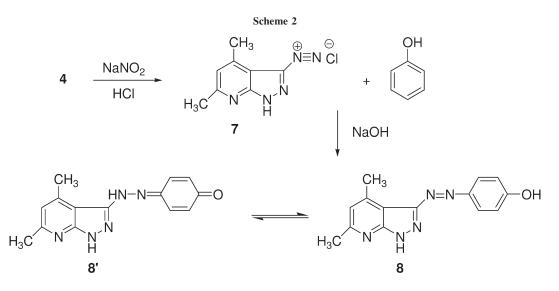


4.2. Diazotization. Treatment of **4** with sodium nitrite in the presence of conc. HCl afforded 4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine-3-diazonium chloride (7), which upon coupling with phenol or 8-hydroxyquinoline in the presence of sodium hydroxide afforded the corresponding azo derivatives **8,8**', and **9,9**', respectively [2] (Scheme 2).

According to the previous DFT calculations at the B3LYP/6-31G* level [5], the azo tautomer 9 was found to be more stable by 3.6 kcal/mol than the hydrazono tautomer 9' [2] (Scheme 3).

Also, coupling of diazonium salt 7 with 3-(methyl (phenyl)amino)propanenitrile gave compound 10.

central nervous systems. Various pyrazolo[3,4-*b*]pryridines have been found to exhibit pharmacological properties. Some of the derivatives of pyrazolo[3,4-*b*]pryridines have been tested for anti-inflammatory [12], action, whereas others have been demonstrated to be good anxiolytic [13]. Our research deals with effective use of 3-amino-4,6-dimethylpyrazolo[3,4-*b*]pyridine in the synthesis of variety of polyfunctionalized heterocyclic compounds exhibited biological interest.

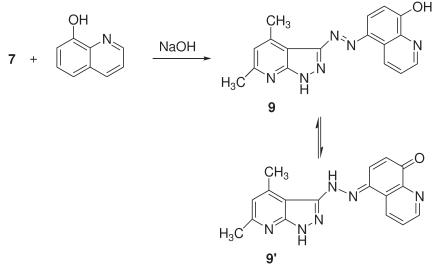


2. SYNTHESIS

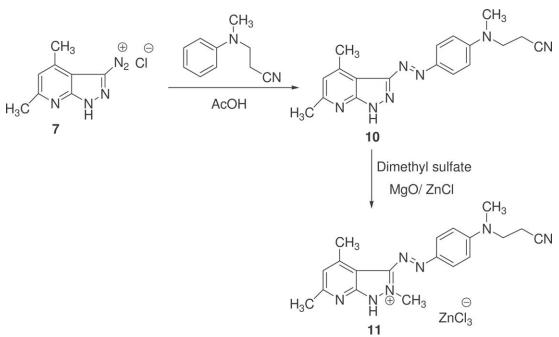
Chlorinating 3-cyano-4,6-dimethylpyridin-2(1H)-one (1) with POCl₃ in dry DMF afforded 2-chloro derivative 2, which was partially hydrated with conc. H₂SO₄ to give 3. Cyclocondensation of 1 and 3 with hydrazine hydrate in EtOH-DMF gave 4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridin-3-amine (4) [14]. Also, refluxing of 2-chloro-3-cyano-4,6-dimethylpyridine (2) and hydrazine hydrate in ethylene glycol or ethanol yielded the amine derivative 4 [3,15] (Scheme 1).

3. REACTIVITY

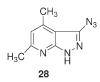
4,6-Dimethyl-1*H*-pyrazolo[3,4-*b*]pyridin-3-amine (4) was polyfunctional compound possessing nucleophilic properties. Typical nucleophilic positions are NH₂ and C=N with reactivity order NH₂ > C=N. These chemical properties have been used to design different heterocyclic moieties; such as diazine and triazine derivatives.

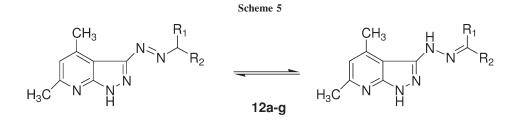

Successive treatment of **10** with dimethyl sulfate and magnesium oxide with zinc chloride solution gave the basic azo dye **11**, fast red on acrylic and acid-modified polyester fibers [3] (Scheme 4).

Diazotized 3-amino-4,6-dimethyl-1*H*-pyrazolo[3,4*b*]pyridine (7) has been used as a versatile precursor for the preparation of several heterocyclic compounds. Diazonium salt 7 coupled with active methylene compounds such as ethyl cyanoacetate, malononitrile, diethyl malonate, ethyl acetoacetate, acetylacetone, 3-(1,4-dioxo-3,4,4e,5,10,10a-hexahydro-1*H*-5,10-benzeno-benzo[*g*]phthalazine-2-yl)-3-oxopropiononitrile [16], and 2-cyano-*N*-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)acetamide [17], to give the corresponding hydrazono derivatives**12a–g**, respectively. Refluxing of**12a– c**and**12f**,**g**in acetic acid furnished the pyridopyrazolotriazines**13a–d**and**14**[4,6–8] (Scheme 5 and 6). The quantitative diazotizations of solid aromatic amines with NO₂ gas are most versatile [18–20]. Further applications are the diazotizations of 3-aminopyrazolo[3,4-*b*]pyridine derivative **4** which quantitatively give the monohydrate of the diazonium nitrates **15,15'** without nitrosation of NH group [5] (Scheme 7).


Careful co-grinding of crystalline **15** with (thio)barbituric acid **16a–e** gives quantitative yields of the tautomeric 5-arylazobarbituric acid **18** [5] (Scheme 8).

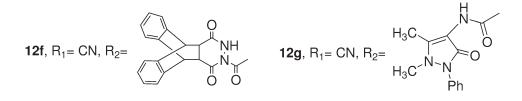
The azo coupling between **15** and the open-chain C—H acidic acetoacetanilide derivatives **19a–e** did not stop at the salts **20** formation, but cyclized directly to afford compound **21** in an interesting solid-state cascade [21–23], to give the heterocyclic salts **21**. The pyrido[2',3':3,4]pyrazolo[5,1-c]triazine derivative **22** can be obtained from **21** in quantitative yield by the action of base [5,24] (Scheme 9).

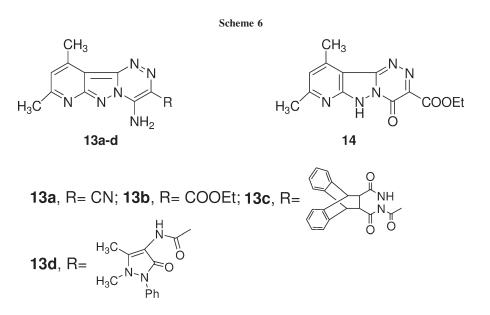



The C-couplings of solid diazonium salts **15** are not restricted to C—H acidic β -dicarbonyl compounds. The solid state azo coupling between **15** and β -naphthol or 2,6-dimethylphenol is the preparative useful and the "azo" dyes **23** or **24** are obtained in quantitative yield after neutralization [5] (Schemes 10 and 11).

1-Heteroaryl-3-aryltriazines **27** were obtained in qualitative yields *via* co-grinding of the anilines **25a–c** with **15** [5] (Scheme 12).

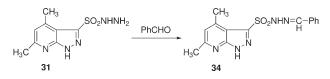
The diazonium salt 7 was reduced with $Na_2S_2O_4$ to give the azide derivative 28 [25].




The diazonium salt 7 when treated with SO_2 and $CuCl_2$ produces the sulfonyl chloride **29**. Compound **29** easily

12a, $R_1 = CN$, $R_2 = COOEt$, **12b**, $R_1 = R_2 = CN$, **12c**, $R_1 = R_2 = COOEt$,

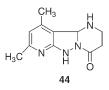
12d, R₁= COOEt, R₂= COCH₃, **12e**, R₁= R₂= COCH₃,



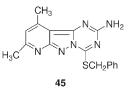
reacts with hydrazine, ammonia, aromatic, or heterocyclic amines to produce the corresponding sulfohydrazide (**30**), sulfonamide (**31**) or *N*-sulfonamide derivatives **32** [26] (Scheme 13).

Sulfohydrazide **31** reacts with acetylacetone to produce pyrazolyl pyrazolopyridinyl sulfone **33** which is also obtained by the reaction of **29** with dimethyl pyrazole [26] (Scheme 14).

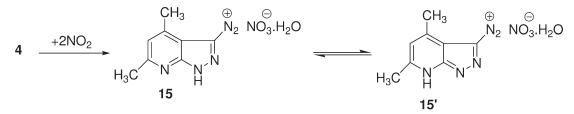
Furthermore, sulfonyl hydrazide **31** condensed with benzaldehyde to give the corresponding hydrazone **34** [26].

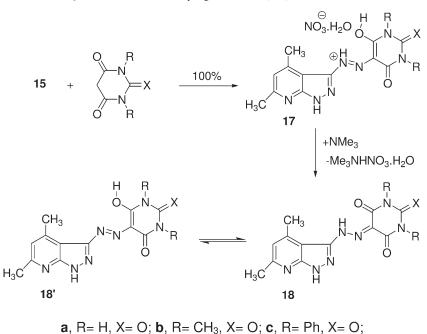


The diazonium salt 7 can be converted into pyrazolopyridinthiol **35** by the reaction with ethyl dithioxanthate [26] (Scheme 15).


The pyrazolopyridinthiol derivative **35** reacted with phenacyl chloride, ethyl bromoacetate, 2-methylbromoacetate, methyl iodide, chloroacetonitrile, or acrylonitrile to produce *S*-alkylated derivatives **36–41** [26] (Scheme 16).

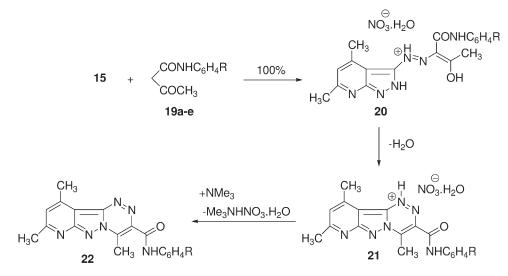
Treatment of ethyl 2-(4,6-dimethyl-1*H*-pyrazolo[3,4*b*]pyridin-3-ylthio)acetate (**37**) with hydrazine hydrate in ethanol yielded the corresponding hydrazine derivative **42** which condensed with *p*-anisaldehyde to afford the hydrazone derivative **43** [26] (Scheme 17).


4.3. Reaction with 3-bromopropionic acid. Cyclocondensation of **4** with 3-bromopropionic acid furnished the diazine derivative **44** [25].


4.4. Reaction with dibenzyl cyanocarbonimidodithioate. Mayer and coworkers have been reported that triazine derivative **45** could be obtained by boiling of **4** with dibenzyl cyanocarbonimidodithioate in pyridine [27].

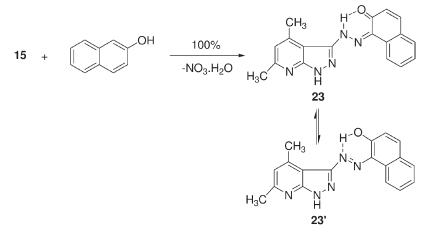
Scheme 7. Quantitative gas-solid synthesis of the stable diazonium nitrate hydrate 15 by treatment of 4 with gaseous NO2.

Scheme 8. Quantitative solid-state couplings of 15 with (thio)barbituric acid derivatives.

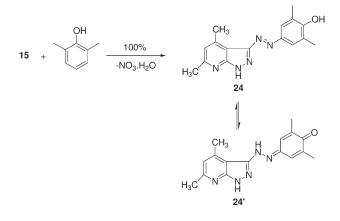


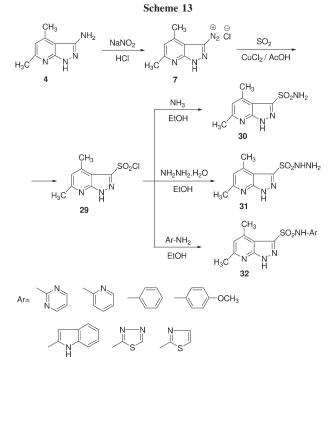
d, R= H, X= S; **e**, R= Et, X= S.

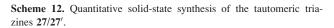
4.5. Reaction with ethyl 2-cyano-3,3-bis(methylthio) acrylate. Treatment of 3-amino-4,6-dimethyl-1*H*-pyrazolo[3,4-*b*]pyridine (4) with ethyl 2-cyano-3,3-bis(methylthio)acrylate (46) [28], in DMF afforded the corresponding pyridopyrazolopyrimidine derivative 47. Condensation of **47** with hydrazine hydrate afforded the corresponding fused tetracyclic derivative **48** [2] (Scheme 18).

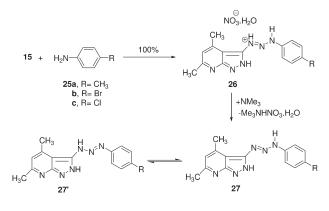

4.6. Reaction with isocyanate, isothiocyanate, and thiocyanate derivatives. Compound 4 was reacted with phenyl isothiocyanate in boiling pyridine to afford the

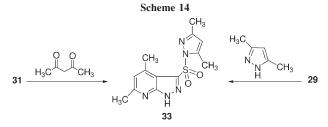
Scheme 9. Quantitative solid-state couplings and solid-state in situ cyclizations with acetoacetanilides.

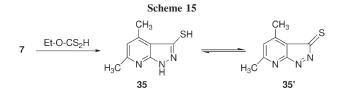


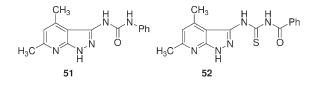

a, R= H; b, R= 4-CH₃; c, R= 4-OCH₃; d, R= 4-NO₂; e, R= 4-Br; f, R= 4-Cl.


Scheme 10. Quantitative solid-state coupling between 15 and β -naphthol.



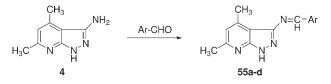

Scheme 11. Quantitative solid-state coupling between 15 and 2,6-dimethylphenol.





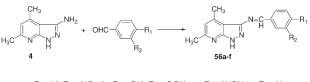
Journal of Heterocyclic Chemistry D

corresponding thiourea derivative **49**, which underwent cyclization to thiazolidinone derivative **50** by reacting with ethyl chloroacetate in ethanol-pyridine mixture [2] (Scheme 19).

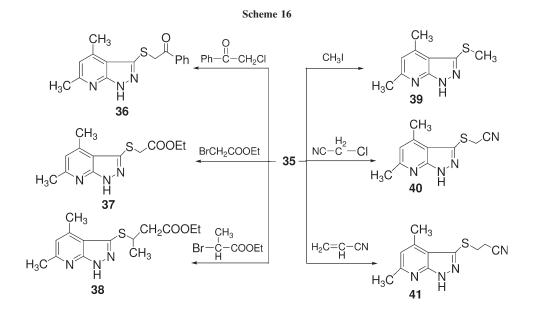

Furthermore, **4** reacted with phenyl isocyanate, benzoyl isothiocyanate to give the corresponding derivatives carbamide **51** and thiocarbamide **52**, respectively [25].

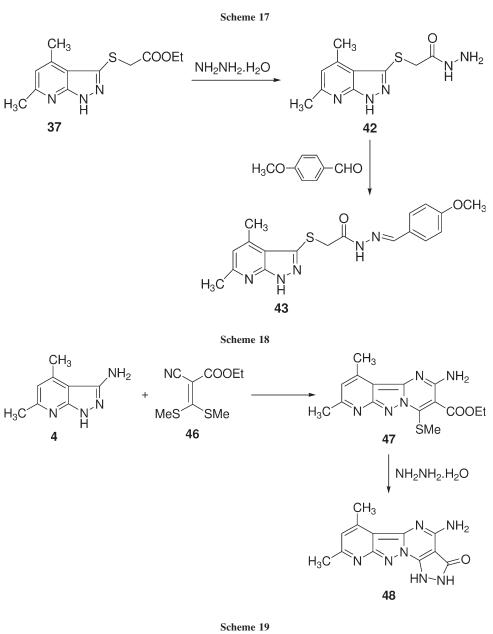
4.7. Reaction with carbon disulfide. The baseprompted nucleophilic addition of compound **4** to carbon disulfide in DMF containing potassium hydroxide afforded the corresponding nonisolable intermediate **53**. Subsequent treatment of the later compound with methyl iodide furnished the corresponding methyl-*N*-(pyrazolo[3,4-*b*]-3-pyridyl)dithiocarbamate (**54**) [2] (Scheme 20).

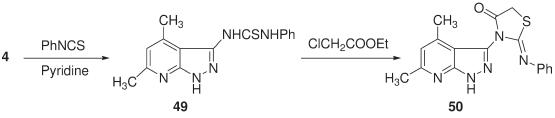
4.8. Reaction with aromatic aldehydes. Pyrazolopyridine derivative **4** undergoes condensation with 2-, 3-, 4-nitro and/or 4-methoxy benzaldehyde in refluxing ethanol

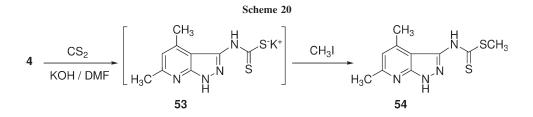

containing few drops of piperidine to give the corresponding Schiff's bases **55a-d** [2,25].

55a, $Ar = 2 - O_2 N C_6 H_4$; **b**, $Ar = 3 - O_2 N C_6 H_4$;

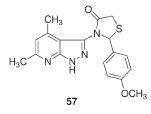

c, $Ar = 4 - O_2 N C_6 H_4$; **d**, $Ar = 4 - O C H_3 C_6 H_4$.

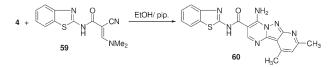

Furthermore, azomethines **56** have been quantitative (100% yield at 100% conversion) obtained as hydrates by ball-milling together 3-amino-4,6-dimethylpyrazolo-pyridine with solid aldehydes without passing through liquid phases [29].




$$\label{eq:rescaled} \begin{split} \textbf{a},\, R_1 &= H,\, R_2 &= \text{NO}_2;\, \textbf{b},\, R_1 &= \text{OH},\, R_2 &= \text{OCH}_3;\, \textbf{c},\, R_1 &= \text{N}(\text{CH}_3)_2,\, R_2 &= \text{H};\\ \\ \textbf{d},\, R_1 &= \text{OH},\, R_2 &= \text{H};\, \textbf{e},\, R_1 &= \text{CI},\, R_2 &= \text{H};\, \textbf{f},\, R_1 &= \text{NO}_2,\, R_2 &= \text{H}. \end{split}$$

The Schiff's base **55d** obtained from the reaction of **4** with anisaldehyde reacted with thioglycolic acid to yield the corresponding thiazolidinone derivative **57** [25].




Journal of Heterocyclic Chemistry DOI 10.1002/jhet

When equimolar amounts of azomethine **55d** and malononitrile were refluxed in ethanol in the presence of TEA, the amine **4** and the arylidine derivative **58** was obtained [25].

$$H_3CO - C - C + CN + CN$$

4.9. Reaction with enaminonitrile. Refluxing of **4** with the enaminonitrile **59** in ethanol containing a catalytic amount of piperidine afforded the corresponding 4-amino-*N*-(benzothiazol-2-yl)-8,10-dimethylpyrido[2',3':3,4] pyrazolo[1,5-*a*]pyrimidin-3-carboxamide (**60**) [1].

Acknowledgment. The author thanks Dr. Saad El-Deen El-Araby, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt, for his assistance.

REFERENCES AND NOTES

[1] Bondock, S.; Fadaly, W.; Metwally, M. A. Eur J Med Chem 2009, 44, 4813.

[2] Metwally, M. A.; Etman, H. A.; Gaafar, H. E.; Khalil, A. M. Chem Heterocyl Compd 2008, 44, 715.

[3] Fleckenstein, E.; Mohr, R. Ger Offen 1974, 25;Fleckenstein, E.; Mohr, R. Addn to Ger Offen 2, 232, 080;Fleckenstein, E.; Mohr, R. Chem Abstr 1974, 81, 65179g.

[4] Khalil, A. M.; Berghot, M. A.; Gouda, M. A. Eur J Med Chem 2009, 44, 4448.

[5] Kaupp, G.; Metwally, M. A.; Amer, F. A.; Abdel-Latif, E. Eur J Org Chem 2003, 1545.

[6] El-Deen, A. M. K.; Geies, A. A.; Mohamed, T. A.; Atalla, A. A. Indian J Chem B 1991, 30B, 878.

[7] El-Dean, A. M. K.; Geies, A. A.; Mohamed, T. A.; Atalla, A. A. Bull Fac Sci Assiut Univ 1991, 20, 15;El-Dean, A. M. K.;

Geies, A. A.; Mohamed, T. A.; Atalla, A. A. Chem Abstr 1992, 116, 106161.

[8] Bondock, S.; Rabie, R.; Etman, H. A.; Fadda, A. A. Eur J Med Chem 2008, 43, 2122.

[9] Bernardino, A. M. R.; Azevedo, A. R.; Pinheiro, L. C. S.; Borges, J. C.; Carvalho, V. L.; Miranda, M. D.; Meneses, M. D. F.; Nascimento, M.; Ferreira, D.; Rebello, M. A.; Silva, V. A. G. G.; Frugulhetti, I. C. P. P. Med Chem Res 2007, 16, 352.

[10] Straub, A.; Benet-Buckholz, J.; Frode, R.; Kern, A.; Kohlsdorfer, C.; Schmitt, P.; Schwarz, T.; Siefert, H.-M.; Stasch, J.-P. Bioorg Med Chem 2002, 10, 1711.

[11] Patel, J. B.; Malick, J. B.; Salama, A. I.; Goldberg, M. E. Phamacol Biochem Behav 1985, 23, 675.

[12] Hamdy, N. A.; Gamal-Eldeen, A. M. Eur J Med Chem 2009, 44, 4547.

[13] Bare, T. M.; McLarem, C. D.; Campbell, J. B.; Firor, J. W.; Resch, J. F.; Walters, C. P.; Salama, A. I.; Meiners, B. A.; Patel, J. B. J Med Chem 1989, 32, 2561.

[14] Kalme, Z. A.; Roloff, B.; Pelchers, Yu. E.; Popelis, Yu. Yu.; Hagen, F.; Duburs, G. J. Khim Geterotsikl Soedin 1992, 9, 1218; Kalme, Z. A.; Roloff, B.; Pelchers, Yu. E.; Popelis, Yu. Yu.; Hagen, F.; Duburs, G. J. Chem Abstr 1993, 119, 49263c.

[15] Lacan, M.; Tabakovic, K. Croat Chim Acta 1975, 47, 127; Lacan, M.; Tabakovic, K. Chem Abstr 1976, 84, 59320s.

[16] Khalil, A. M.; Berghot, M. A.; Gouda, M. A. Eur J Med Chem 2009, 44, 4434.

[17] Farag, A. M.; Dawood, K. M.; El-Menoufy, H. A. Heteroat Chem 2004, 15, 508.

[18] Kaupp, G.; Herrmann, A. J Prakt Chem 1997, 339, 256.

[19] Kaupp, G.; Herrmann, A.; Schmeyers, J. Chem Eur J 2002, 8, 1359.

[20] Kaupp, G.; Schmeyers, J.; Haak, M.; Marquardt, T.; Herrmann, A. Mol Cryst Liq Cryst 1996, 276, 315.

[21] Kaupp, G.; Naimi-Jamal, M. R. Eur J Org Chem 2002, 1368.

[22] Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Chem Eur J 2002, 8, 594.

[23] Kaupp, G.; Schmeyers, J.; Kuse, A.; Atfeh, A. Angew Chem Int Ed Eng 1999, 38, 2896.

[24] Kocevar, M.; Stanovnik, B.; Tisler, M. J Heterocycl Chem 1978, 15, 1175.

[25] El-Deen, A. M. K.; Atalla, A. A.; Gaber, A. M. Bull Fac Sci Assiut Univ 1990, 19, 23; Chem Abstr 1991, 114, 81689.

[26] El-Dean, A. M. K.; Atalla, A. A.; Mohamed, T. A.; Geies, A. A. Z Naturforsch B: Chem Sci 1991, 46, 541; Chem Abstr 1991, 115, 49498.

[27] Mayer, K. H.; Sasse, K.; Koenig, A. V. Ger Offen 1981,
49, 3001498, 19810723; Mayer, K. H.; Sasse, K.; Koenig, A. V. Chem
Abstr 1981, 95, 132967.

[28] Huang, Z. T.; Shi, X. Synthesis 1990, 162.

[29] Abdel-Latif, E.; Kaupp, G.; Metwally, M. A. J Chem Res 2005, 3, 187; Abdel-Latif, E.; Kaupp, G.; Metwally, M. A. Chem Abstr 2005, 144, 350585.